Принципиальная тепловая схема водогрейной котельной + схемы автоматизации

Энергия-СПБ

Категории

  • Водогрейные котлы
  • Паровые котлы
  • Топки
  • Батарейные циклоны
  • Модульные котельные
  • Циклоны
  • Комплектующие
  • Дымососы
  • Нет категории
  • Колосники
  • Топливоподача
  • Золоуловители
  • Котловая автоматика
  • Трубы котлов
  • Дымовые трубы
  • Водоподготовка
  • Забрасыватель
  • Электроды
  • Паровые котельные
  • Резервуары
  • Скиповые подъемники

Тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения

Тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения

Выбор системы теплоснабжения (открытая или закрытая) производится на основе технико-экономических расчетов. Пользуясь данными, полученными от заказчика, и методикой, изложенной в § 5.1, приступают к составлению, затем и расчету схем, которые называются тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения, поскольку максимальная теплопроизводительность чугунных котлов не превышает 1,0 – 1,5 Гкал/ч.

Так как рассмотрение тепловых схем удобнее вести на практических примерах, ниже приведены принципиальные и развернутые схемы котельных с водогрейными котлами. Принципиальные тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения, работающей на закрытую систему теплоснабжения, показана на рис. 5.7.

Рис. 5.7. Принципиальные тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения.

1 – котел водогрейный; 2 – насос сетевой; 3 – насос рециркуляционный; 4 – насос сырой воды; 5 – насос подпиточной воды; 6 – бак подпиточной воды; 7 – подогреватель сырой воды; 8 – подогреватель химии чески очищенной воды; 9 – охладитель подпиточной воды; 10 – деаэратор; 11 – охладитель выпара.

Вода из обратной линии тепловых сетей с небольшим напором (20 – 40 м вод. ст.) поступает к сетевым насосам 2. Туда же подводится вода от подпиточных насосов 5, компенсирующая утечки воды в тепловых сетях. К насосам 1 и 2 подается и горячая сетевая вода, теплота которой частично использована в теплообменниках для подогрева химически очищенной 8 и сырой воды 7.

Для обеспечения температуры воды перед котлами, заданной по условиям предупреждения коррозии, в трубопровод за сетевым насосом 2 подают необходимое количество горячей воды, вышедшей из водогрейных котлов 1. Линию, по которой подают горячую воду, называют рециркуляционной. Вода подается рециркуляционным насосом 3, перекачивающим нагретую воду. При всех режимах работы тепловой сети, кроме максимально зимнего, часть воды из обратной линии после сетевых насосов 2, минуя котлы, подают по линии перепуска в количестве G пер в подающую магистраль, где вода, смешиваясь с горячей водой из котлов, обеспечивает заданную расчетную температуру в подающей магистрали тепловых сетей. Добавка химически очищенной воды подогревается в теплообменниках 9, 8 11 деаэрируется в деаэраторе 10. Воду для подпитки тепловых сетей из баков 6 забирает подпиточный насос 5 и подает в обратную линию.

Даже в мощных водогрейных котельных, работающих на закрытые системы теплоснабжения, можно обойтись одним деаэратором подпиточной воды с невысокой производительностью. Уменьшается также мощность подпиточных насосов, оборудование водоподготовительной установки и снижаются требования к качеству подпиточной воды по сравнению с котельными для открытых систем. Недостатком закрытых систем является некоторое удорожание оборудования абонентских узлов горячего водоснабжения.

Для сокращения расхода воды на рециркуляцию ее температура на выходе из котлов поддерживается, как правило, выше температуры воды в подающей линии тепловых сетей. Только при расчетном максимально зимнем режиме температуры воды на выходе из котлов и в подающей линии тепловых сетей будут одинаковы. Для обеспечения расчетной температуры воды на входе в тепловые сети к выходящей из котлов воде подмешивается сетевая вода из обратного трубопровода. Для этого между трубопроводами обратной и подающей линии, после сетевых насосов, монтируют линию перепуска.

Наличие подмешивания и рециркуляции воды приводит к режимам работы стальных водогрейных котлов, отличающимся от режима тепловых сетей. Водогрейные котлы надежно работают лишь при условии поддержания постоянства количества воды, проходящей через них. Расход воды должен поддерживаться в заданных пределах независимо от колебаний тепловых нагрузок. Поэтому регулирование отпуска тепловой энергии в сеть необходимо осуществлять путем изменения температуры воды на выходе из котлов.

Для уменьшения интенсивности наружной коррозии труб поверхностей стальных водогрейных котлов необходимо, поддерживать температуру воды на входе в котлы выше температуры точки росы дымовых газов. Минимально допустимая температура воды на входе в котлы рекомендуется следующая:

  • при работе на природном газе – не ниже 60°С;
  • при работе на малосернистом мазуте – не ниже 70°С;
  • при работе на высокосернистом мазуте – не ниже 110°С.

В связи с тем, что температура воды в обратных линиях тепловых сетей почти всегда ниже 60°С, тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения предусматривают, как отмечено ранее, рециркуляцинонные насосы и соответствующие трубопроводы. Для определения необходимой температуры воды за стальными водогрейными котлами должны быть известны режимы работы тепловых сетей, которые отличаются от графиков или режимных котлоагрегатов.

Во многих случаях водяные тепловые сети рассчитываются для работы по так называемому отопительному температурному графику типа, показанного на рис. 2.9. Расчет показывает, что максимальный часовой расход воды, поступающей в тепловые сети от котлов, получается при режиме, соответствующем точке излома графика температур воды в сетях, т. е. при температуре наружного воздуха, которой соответствует на низшей температура воды в подающей линии. Эту температуру поддерживают постоянной даже при дальнейшем повышении температуры наружного воздуха.

Исходя из изложенного, в расчет тепловой схемы котельной вводят пятый характерный режим, отвечающий точке излома графика температур воды в сетях. Такие графики строятся для каждого района с соответствующей последнему расчетной температурой наружного воздуха по типу показанного на рис. 2.9. С помощью подобного графика легко находятся необходимые температуры в подающей и обратной магистралях тепловых сетей и необходимые температуры воды на выходе из котлов. Подобные графики для определения температур воды в тепловых сетях для различных расчетных температур наружного воздуха – от -13°С до – 40°С разработаны Теплоэлектропроектом.

Температуры воды в подающей и в обратной магистралях,°С, тепловой сети могут быть определены по формулам:

где tвн – температура воздуха внутри отапливаемых помещений,°С; tH – расчетная температура наружного воздуха для отопления,°С; t′H – изменяющаяся во времени температура наружного воздуха,°С;π′i – температура воды в подающем трубопроводе при tн°С; π2 – температура воды в обратном трубопроводе при tн°С;tн – температура воды в подающем трубопроводе при t′н,°С; ∆т – расчетный перепад температур, ∆t = π1 – π2,°С; θ =πз2 – расчетный перепад температур в местной системе,°С; π3 = π1+ aπ2 / 1+ a – расчетная температура воды, поступающей в отопительный прибор, °С; π′2 – температура воды, идущей в обратный трубопровод от прибора при t’H,°С; а – коэффициент смещения, равный отношению количества обратной воды, подсасываемой элеватором, к количеству сетевой воды.

Сложность расчетных формул (5.40) и (5.41) для определения температуры воды в тепловых сетях подтверждает целесообразность использования графиков типа показанного на рис. 2.9, построенного для района с расчетной температурой наружного воздуха – 26 °С. Из графика видно, что при температурах наружного воздуха 3°C и выше вплоть до конца отопительного сезона температура воды в подающем трубопроводе тепловых сетей постоянна и равна 70 °С.

Исходными данными для расчетов тепловых схем котельных со стальными водогрейными котлами для закрытых систем теплоснабжения, как указывалось выше, служат расходы теплоты на отопление, вентиляцию и горячее водоснабжение с учетом тепловых потерь в котельной, сетях и расхода теплоты на собственные нужды котельной.

Соотношение отопительно-вентиляционных нагрузок и нагрузок горячего водоснабжения уточняется в зависимости от местных условий работы потребителей. Практика эксплуатации отопительных котельных показывает, что среднечасовой за сутки расход теплоты на горячее водоснабжение составляет около 20 % полной теплопроизводительности котельной. Тепловые потери в наружных тепловых сетях рекомендуется принимать в размере до 3 % общего расхода теплоты. Максимальные часовые расчетные расходы тепловой энергии на собственные нужды котельной с водогрейными котлами при закрытой системе теплоснабжения можно принять по рекомендации [9] в размере до 3 % установленной теплопроизводительности всех котлов.

Суммарный часовой расход воды в подающей линии тепловых сетей на выходе из котельной определяется, исходя из температурного режима работы тепловых сетей, и, кроме того, зависит от утечки воды через не плотности. Утечка из тепловых сетей для закрытых систем теплоснабжения не должна превышать 0,25 % объема воды в трубах тепловых сетей.

Допускается ориентировочно принимать удельный объем воды в местных системах отопления зданий на 1 Гкал/ч суммарного расчетного расхода теплоты для жилых районов 30 м 3 и для промышленных предприятий – 15 м 3 .

С учетом удельного объема воды в трубопроводах тепловых сетей и подогревательных установках общий объем воды в закрытой системе ориентировочно можно принимать равным для жилых районов 45 – 50 м 3 , для промышленных предприятий – 25 – 35 MS на 1 Гкал/ч суммарного расчетного расхода теплоты.

Рис. 5.8. Развернутаые тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения.

1 – котел водогрейный; 2 – насос рециркуляционный; 3 – насос сетевой; 4 – насос сетевой летний; 5 – насос сырой воды; 6 – насос конденсатный; 7 – бак конденсатный; 8 – подогреватель сырой воды; 9 – подогреватель химически очищенной воды; 10 – деаэратор; 11 – охладитель выпара.

Иногда для предварительного определения количества утекающей из закрытой системы сетевой воды эту величину принимают в пределах до 2 % расхода воды в подающей линии. На основе расчета принципиальной тепловой схемы и после выбора единичных производительностей основного и вспомогательного оборудования котельной составляется полная развернутая тепловая схема. Для каждой технологической части котельной обычно составляются раздельные развернутые схемы, т. е. для оборудования собственно котельной, химводоочистки и мазутного хозяйства. Развернутая тепловая схема котельной с тремя водогрейными котлами КВ -ТС – 20 для закрытой системы теплоснабжения показана на рис. 5.8.

В верхней правой части этой схемы размещены водогрейные котлы 1, а в левой – деаэраторы 10 ниже котлов размещены рециркуляцинонные ниже сетевые насосы, под деаэраторами – теплообменники (подогреватели) 9, бак деаэрированной воды 7, подпилочные насосы 6, насосы сырой воды 5, дренажные баки и продувочный колодец. При выполнении развернутых тепловых схем котельных с водогрейными котлами применяют обще станционную или агрегатную схему компоновки оборудования (рис. 5.9).

Общестанционные тепловые схемы котельных с водогрейными котлами для закрытых систем теплоснабжения характеризуется присоединением сетевых 2 и рециркуляционных 3 насосов, при котором вода из обратной линии тепловых сетей может поступать к любому из сетевых насосов 2 и 4, подключенных к магистральному трубопроводу, питающему водой все котлы котельной. Рециркуляцинонные насосы 3 подают горячую воду из общей линии за котлами также в общую линию, питающую водой все водогрейные котлы.

При агрегатной схеме компоновки оборудования котельной, изображенной на рис. 5.10, для каждого котла 1 устанавливаются сетевые 2 и рециркулярные насосы 3.

Рис 5.9 Общестанционная компоновка котлов сетевых и рециркуляционных насосов.1 – котел водогрейный , 2 – рециркуляционный , 3 – насос сетевой, 4 – насос сетевой летний.

Рис. 5-10. Агрегатная компоновка котлов КВ – ГМ – 100, сетевых и рециркуляционных насосов. 1 – насос водогрейный; 2 – насос сетевой; 3 – насос рециркуляционный.

Вода из обратной магистрали поступает параллельно ко всем сетевым насосам, а нагнетательный трубопровод каждого насоса подключен только к одному из водонагревательных котлов. К рециркуляционному насосу горячая вода поступает из трубопроводом за каждым котлом до включения его в общую падающую магистраль и направляется в питательную линию того же котлоагрегата. При компоновке при агрегатной схеме предусматривается установка одного для всех водогрейных котлов. На рис.5.10 линии подпиточной и горячей воды к основным трубопроводам и теплообменником не показаны.

Читайте также:  Подложка под водяной теплый пол: востребованные варианты и монтаж

Агрегатный способ размещения оборудования особенно широко применяется в проектах водогрейных котельных с крупными котлами ПТВМ – 30М, КВ – ГМ 100. и др. Выбор обще станционного или агрегатного способа компоновки оборудования котельных с водогрейными котлами в каждом отдельном случае решается, исходя из эксплуатационных соображений. Важнейшими из них из компоновки при агрегатной схеме является облегчение учета и регулирования расхода и параметра теплоносителя от каждого агрегата магистральных теплопроводов большого диаметра и упрощение ввода в эксплуатацию каждого агрегата.

Котельный завод Энергия-СПБ производит различные модели водогрейных котлов. Транспортирование котлов и другого котельно-вспомогательного оборудования осуществляется автотранспортом, ж/д полувагонами и речным транспортом. Котельный завод поставляет продукцию во все регионы России и Казахстана.

Схема промышленной водогрейной котельной

Проектирование схемы водогрейной котельной

При проектировании и монтаже водогрейных котельных основным руководящим документом являются «Правил устройства и безопасной эксплуатации паровых котлов с давлением пара не более 0,07 МПа (0,7 кгс/см²), водогрейных котлов и водоподогревателей с температурой нагрева воды не выше 388 К (115 С)» Помещения котельной должны выполнятся согласно СП 89.13330.2016 «Котельные установки»

Помещения котельной, схемы расположения оборудования

Котельные бывают отдельно стоящие и встроенные.

При установке котлов в производственных зданиях, место установки должно быть отделено от остальной части помещения огнестойкими перегородками по высоте котла, но не ниже 2 м, с дверями, открывающихся наружу.

Оборудование в котельных располагается с учетом требований СП:

  • расстояние от фронтальной части котла до противоположной стены не менее 3 м, для ручных котлов КВр расстояния между фронтами котлов при расположении друг напротив друга – не менее 5 м,
  • ширина прохода между котлами и между котлом и задней стеной помещения не менее 1 м;
  • ширина проходов между выступающими частями котлов, выступающими частями здания, рабочими площадками и другими выступающими конструкциями не менее 0,7 м;
  • для котлов, требующих бокового обслуживания, ширина проходов между котлами или между котлом и стеной помещения должна быть не менее 1,5 м;
  • при отсутствии необходимости обслуживания котельных агрегатов сбоку необходимо организовать хотя бы один проход между котлами или между крайним котлом и стеной помещения. Ширина этих проходов, а также ширина между котлами и задней стеной помещения должна составлять не менее 1 м;
  • при отсутствии необходимости бокового обслуживания и установке котлов вблизи стен или колонн обмуровка должна отстоять от стены помещения не менее чем на 0,7 м.
  • расстояние между фронтами котлов или выступающими частями топок котлов, расположенных один против другого, должно составлять не менее 5 м, не примыкать к стене помещения, а стоять от нее не менее чем на 0,7 м.
  • при размещении перед фронтом котлов насосов, вентиляторов, а также запасов твердого топлива не более чем для одной смены работы котлов ширина свободных проходов вдоль фронта котлов должна быть не менее 1,5 м, а установленное оборудование и топливо не должны мешать обслуживанию топок и котлов.

  • расстояние от фронта котлов или выступающих частей топок до противоположной стены для котлов с механическими топками, расстояние от выступающих частей топок должно быть не менее 2 м.
  • расстояние между фронтом котлов и выступающими частями топок, расположенных друг против друга для котлов, оборудованных механизированными топками – не менее 4 м;

  • расстояние от фронта котлов или выступающих частей топок до противоположной стены для газовых и жидкотопливных котлов, расстояние от выступающих частей горелочных устройств до стены котельного помещения должно быть не менее 1 м,
  • расстояние между фронтом котлов и выступающими частями топок, расположенных друг против друга для котлов, на газообразном или жидком топливе- не менее 4 м, при этом расстояние между горелочными устройствами- не менее 2 м;
  • для котельных, на жидком или газообразном топливе, расстояние между фронтами котлов должно быть не менее 4 м, а расстояние между горелками – не менее 2 м.

Вентиляция котельной

В котельной необходимо предусмотреть систему вентиляции котельной. Промышленные водогрейные теплогенераторы в большом объеме расходуют воздух для сгорания твердого топлива. Вентилятор подает воздух в котел, топливо сгорает и через систему газоходов и дымовую трубу выходит наружу. Для восполнения этого воздуха необходимо обеспечить подачу наружного воздуха в котельную в объеме равном объему, подаваемому в котлы. Для этого в схеме водогрейной котельной предусматривается система, состоящая их вентилятора и калорифера, а также воздушных клапанов.

В промышленных водогрейных котельных, работающих в летний период для выработки горячей воды, должны быть оборудованы системами дефлекторов, для удаления теплого воздуха из котельной и обеспечения циркуляции воздуха в котельной.

Расчет вентиляции котельной выполняется специализированной организацией, с учетом работы котельной, нагрузки и региона расположения.

Аэродинамическая схема котельной

Газовоздушная или аэродинамическая схема котельной состоит из следующего оборудования:

  • Вентилятор
  • Водогрейный котел КВ
  • Золоуловитель
  • Дымосос
  • Дымовая труба

Аэродинамическая схема котельной на твердом топливе

Дымососы и вентиляторы устанавливаются индивидуально к каждому водогрейному котлу.

Групповые и общие ТДМ возможно устанавливать только по результатам технико-экономических обоснований.

Тягодутьевые механизмы должны регулироваться частотными приводами. Групповые или общие тягодутьевые установки следует проектировать с двумя дымососами и двумя вентиляторами, рабочими и резервными, рассчитанным на производительность группы котлов.

Газоходы котельной и дымовая труба

В газоходах за каждым котлом устанавливается шибер с указанием положения заслонки.

Дымовая труба рассчитывается для работы котельной при ее расчетной мощности, в случае планирования дальнейшего увеличения нагрузки необходимо предусмотреть запас.

Высота дымовой трубы котельной всегда определяется на основании результатов аэродинамического расчета газовоздушного тракта. Если котельная работает в летнем режиме, необходимо проверить стабильность работы системы, возможно потребуется установка трубы меньшего диаметра для работы в летнем режиме. Кроме обеспечения тяги труба выполняет еще одну важную функцию – рассеивание вредных выбросов, образующихся при горении топлива. Расчет концентрации вредных выбросов производится специализированной организаций. В твердотопливных котельных должны быть установлены золоуловители.

Тепловая схема водогрейной котельной

Тепловая схема котельной- изображение с помощью условных графических изображений основного и вспомогательного оборудования, последовательность его подключения линиями трубопроводов с установленной запорной и регулирующей арматурой и устройствами безопасности.

Тепловая схема водогрейной котельной на твердом топливе

На приведенной схеме изображена одноконтурная отопительная водогрейная котельная с ручными твердотопливными котлами КВр. Вы можете заказать разработку схемы водогрейной котельной специалистами нашего завода.

Предохранительные клапаны водогрейной котельной

В качестве предохранительных устройств котла применяются:

рычажно-грузовые предохранительные клапаны;

пружинные предохранительные клапаны.

Водогрейные котлы мощностью более 400 КВт должны иметь не менее чем два предохранительных клапана диаметром каждого не менее 40 мм.

Водогрейные котлы мощностью 400 КВт и менее оборудуются одним предохранительным клапаном.

Число и диаметр предохранительных клапанов определяют расчетом. Наиболее распространенные модели клапанов для котлов КВ 17с28нж и OR.1832. Место установки предохранительных устройств на трубопроводах, присоединенных к котлу без промежуточных запорных органов. При установке на котле двух предохранительных клапанов один из них – контрольный. Контрольный клапан должен иметь защиту, не позволяющую обслуживающему персоналу котельной регулировать клапан, но не препятствующею проверке его состояния.

Требования к установке контрольно- измерительных приборов в котельной

В схемах водогрейных котельных манометры следует располагать:

на входе воды в котел после запорного органа;

выходе нагретой воды из котла до запорного органа;

всасывающих и нагнетательных линиях циркуляционных и подпиточных насосов.

Термометры должны быть установлены при входе воды в котел и на выходе из него.

На выходе воды из котла термометр должен быть расположен между котлом и запорным органом.

При наличии в котельной двух и более котлов термометры размещают на общих подающем и обратном трубопроводах. В этом случае установка термометра на обратном трубопроводе каждого котла не обязательна.

Автоматика котельной

Схемы автоматического регулирования котельных должны предусматривать автоматику безопасности, сигнализацию, автоматическое регулирование, контроль, входящие в автоматизированную систему управления технологическими процессами котельной (АСУ ТП).

Мы рекомендуем при монтаже котельной устанавливать серийно изготавливаемые сертифицированные средства автоматики котельной заводского изготовления. Купить все необходимое для подключения котлов вы можете на нашем официальном сайте Котельного завода.

Автоматизация котельной: принцип работы и перспективы

Общие проблемы автоматизации котельной

Одной из самых актуальных проблем современной цивилизации, и в то же самое время одной из самых древних, получивших практические решения, является проблема автоматизации. Самострелы и ловушки древних охотников – это примеры автоматических устройств, срабатывающих так, как надо тогда, когда надо.

Всевозможные демонстрации в древнеегипетских храмах срабатывали без участия человека, а лишь тогда, когда наступала соответствующая ситуация. Массовое внедрение автоматики в современную повседневную жизнь людей лишь подтверждает актуальность этой проблемы в наше время.
Особенно это заметно в производственной деятельности человека. Непрерывный рост единичной мощности агрегатов, увеличение их производительности требуют более оперативного и более правильного принятия решений.

Число этих решений в единицу времени непрерывно возрастает, ответственность за их правильность также растёт. Психофизиологические возможности человека уже не позволяют ему справляться с обработкой возросшего потока информации.


На помощь приходит новейшая вычислительная техника и эффективные методы теории управления. Всё более усложнённые технологические и теплотехнические процессы требуют повышения быстродействия технических средств автоматики. Одновременно растёт цена отказа, и растут требования к надёжности и живучести техники.
Прогресс в части средств автоматизации тесно связан с изменениями в элементной базе вычислительной техники. Сейчас практически все приборы строятся на основе микропроцессоров.

Это позволяет обрабатывать более сложные алгоритмы, повышать точность измерения технологических параметров, нагружать отдельные приборы ранее не свойственными им функциями. И, самое главное, обмениваться информацией между собой, работая, как единая система управления.

Средства автоматизации для котельных

Технические средства автоматизации:

  • датчики параметров технологического процесса;
  • исполнительные механизмы, перемещающие по командам в нужном направлении регулирующие органы;
  • управляющая техника, обрабатывающая в соответствии с заложенными в неё алгоритмами и программами информацию от датчиков и формирующая команды исполнительным механизмам;
  • приборы для выбора режимов управления и для дистанционного управления исполнительными механизмами;
  • средства отображения и представления информации оперативному персоналу;
  • устройства для документирования и архивирования технологической информации;
  • средства коллективного представления информации.

Вся эта техника за вторую половину прошлого столетия претерпела революционные изменения, не в последнюю очередь, благодаря достижениям советской науки.
Так, например, приборы манометрического ряда, широко применяемые при измерениях давления, расхода, скорости и уровня жидкостей и газов, а также при измерениях силы и массы, поменяли физический принцип чувствительного элемента.

Вместо мембраны, прогибающейся под действием сила и перемещающей шток электромеханического преобразователя, стали использовать тензометрический способ.
Его суть в том, что некоторые материалы при механическом воздействии на них меняют свои электрические параметры. Чувствительная измерительная схема улавливает эти изменения, а вычислительное устройство, встроенное в прибор, переводит их в величину технологического параметра.

Приборы стали компактней, надёжней, точнее. И технологичней в производстве. Современные исполнительные механизмы принимают не только команды «включить» и «выключить», как было много лет. Они могут принимать команды в цифровом коде, самостоятельно расшифровывать их, исполнять и предавать отчёт о своих действиях и своём состоянии.
Управляющая техника прошла путь от ламповых регуляторов и релейно-контактных схем до микропроцессорных регулирующих, логических и демонстрационных контроллеров.

Испытания первого советского регулирующего микропроцессорного контроллера разработки НИИТеплоприбор были проведены в январе 1980 года на учебной ТЭЦ Московского энергетического института. ТЭЦ работает в составе Мосэнерго. По первым слогам трёх слов названия изделие назвали «Ремиконт». Через пять лет провели более масштабные промышленные испытания Ремиконтов на трёх мощных промышленных объектах. И с этого момента в новые АСУ ТП по всей стране и в зарубежные проекты закладывались только микропроцессорные контроллеры.

За рубежом применение подобных контроллеров в системах автоматизации различных объектов началось чуть раньше.
Микропроцессорный контроллер – это вычислительное устройство, сконструированное специально для управления технологическим объектом и расположенным в непосредственной от него близости.

Читайте также:  Принцип работы и устройство водяного теплого пола

Контроллер состоит из следующих блоков и устройств:

  • блок питания;
  • вычислитель;
  • блок ввода аналоговых сигналов разных номиналов с гальваническим разделением;
  • устройство ввода дискретных сигналов активных (в виде напряжения) и пассивных (в виде сухого контакта);
  • блок вывода аналоговых сигналов разных номиналов с гальваническим разделением;
  • устройство вывода дискретных сигналов активных и пассивных;
  • прибор интерфейсной связи для подключения контроллера к системному информационному полю.

Блоки ввода и вывода сигналов – блоки группы УСО (устройств связи с объектом) – все многоканальные, имеют от 8 до 16 каналов. На конкретную задачу контролер собирается методом проектной компоновки. Состав и количество блоков УСО выбирается исходя из количества соответствующих сигналов в системе.
В блоке вычислителя находится процессор, оперативная память (ОЗУ) и постоянная память (ПЗУ). В ПЗУ записана библиотека алгоритмов. Её состав охватывает практически все используемые в подобных системах задачи управления – регулирования, арифметических вычислений, динамических преобразований, логических действий.

Программирование контроллеров ведётся методом технологического программирования. Для современных моделей контроллеров этот метод представляет собой сборку функциональной схемы задачи управления на экране монитора.

После простейшей проверки на отсутствие ошибок схема-программа загружается в оперативную память контроллера. Интуитивная доступность метода для традиционных автоматчиков способствовала быстрому и широкому распространению Ремиконтов.

Автоматизированные тепловые станции

В 1992 году организация, управляющая московской коммунальной энергетикой – МОСТЕПЛОЭНЕРГО – приняла решение на одной из своих новостроек внедрить современную АСУ ТП. Была выбрана районная тепловая станция РТС «ПЕНЯГИНО». Первая очередь станции строилась в составе четырёх котлов типа КВГМ-100.
В это время развитие Ремиконтов привело к появлению программно-технического комплекса ПТК КВИНТ.В состав комплекса кроме самих Ремиконтов входила операторская станция на базе персональной ЭВМ с полным программным обеспечением, пакет программ системы автоматизированного проектирования САПР.

Функции АСУ ТП районной тепловой станции:

  • полностью автоматический пуск котла из холодного состояния до выхода на рабочий режим путём кликания на экране монитора кнопки «ПУСК»;
  • поддержание температуры выходной воды в соответствии с температурным графиком;
  • управление расходом питательной воды с учётом подпитки;
  • технологические защиты с отключением подачи топлива;
  • контроль всех теплотехнических параметров и представление их оператору на экране персональной ЭВМ;
  • контроль состояния агрегатов и механизмов – «ВКЛЮЧЕН» или «ВЫКЛЮЧЕН»;
  • дистанционное управление исполнительными механизмами с экрана монитора и выбор режима управления – ручной, дистанционный или автоматический;
  • информирование оператора о нарушениях в работе контроллеров;
  • связь с диспетчером района по цифровому информационному каналу.

Техническая часть системы была скомпонована в четырёх шкафах – по одному на каждый котёл. В каждом шкафу установлены четыре контроллера в каркасно-модульном исполнении.

Задачи между контроллерами распределены таким образом:

Контроллер №1 выполнял все операции по пуску котла. В соответствии с алгоритмом пуска, который был предложен Теплоэнергоремонтом:

  • контролер включает дымосос и вентилирует топку и дымоходы;
  • включает вентилятор подачи воздуха;
  • включает насосы подачи воды;
  • подключает газ на розжиг каждой горелки;
  • по контролю наличия пламени открывает основной газ на горелки.

Контроллер №2 выполнен в дублированном варианте. Если во время пуска котла сбой техники не страшен, так как можно остановить программу и начать всё сначала, то второй контроллер ведёт основной режим в течении длительного времени.

Особая ответственность на нём в холодное время года. При автоматической диагностике нештатной ситуации в котельной происходит автоматическое безударное переключение с основного контроллера на резервный. На этом же контроллере организованы технологические защиты.
Контроллер №3 предназначен для выполнения менее ответственных функций. При его отказе можно вызвать ремонтника и некоторое время переждать. На этом же контроллере запрограммирована модель котла.

С её помощью проводится предпусковая проверка работоспособности всей программы управления. Её же используют при обучении оперативного персонала.
Работы по созданию головных АСУ ТП московских РТС ПЕНЯГИНО, КОСИНО-ЖУЛЕБИНО, БУТОВО, ЗЕЛЕНОГРАД проводил коллектив в составе МОСПРОМПРОЕКТ (проектные работы), ТЕПЛОЭНЕРГОРЕМОНТ (алгоритмы управления), НИИТеплоприбор (микропроцессорная центральная часть системы).

Перспективы

Развитие и совершенствование элементной базы позволяет снижать габариты технических средств автоматизации, их энергоёмкость. Расширяются функциональные возможности.

Наличие собственного вычислителя в каждом полевом устройстве позволяет выводить от него информацию в систему, а ему получать команды из любой точки системы. Технология полевой шины позволяет существенно повысить живучесть системы, упростить процессы наладки.

Как спроектировать тепловую схему котельной для частного дома + некоторые примеры автоматизации

Если загородный дом используют не просто для летнего отдыха, а для круглогодичного постоянного проживания, стоит задуматься об устройстве частной котельной. Правильно сконструированная и смонтированная котельная установка сможет обслуживать все необходимые коммуникации: системы отопления, снабжение горячей и холодной водой, вентиляцию. Чтобы не допустить ошибок в монтаже оборудования и грамотно рассчитать технические нюансы, предварительно должна быть составлена тепловая схема котельной с указанием основных аппаратов и материалов.

Общие положения по проектированию

Каждый шаг монтажа котельной установки должен быть продуман, поэтому не стоит самостоятельно пытаться проектировать коммуникации и заниматься установкой оборудования, лучше обратиться к специалистам, которые имеют огромный опыт в монтаже инженерных систем для частных коттеджей. Они дадут ряд ценных подсказок, например, помогут выбрать наиболее оптимальную модель котла и определить место его установки.

Предположим, для небольшого дачного дома достаточно настенного аппарата, который без труда расположится на кухне. Двухэтажный коттедж, соответственно, нуждается в специально выделенном помещении, которое обязательно оборудуется вентиляцией, дымоходом, отдельным выходом и окном. Места должно быть достаточно для размещения остальных составляющих: насосов, бойлера, соединительных элементов, труб и др.

Процесс проектирования котельной для частного дома включает в себя несколько пунктов:

  • подготовка схемы котельной относительно расположения внутри дома;
  • схема распределения оборудования с указанием основных технических характеристик;
  • спецификация на используемые материалы и оборудование.

Кроме приобретения компонентов системы и их монтажа, а также графических работ, среди которых должна присутствовать принципиальная схема, профессионалы помогут с оформлением необходимых документов.

Пример принципиальной схемы водогрейной котельной: I – котел; II – испаритель воды; III – подогреватель исходной воды; IV – тепловой двигатель; V – конденсатор; VI – подогреватель (дополнительный); VII – аккумуляторный бак

Подробнее о принципиальной схеме котельной

Грамотно составленный графический чертеж должен отражать в первую очередь все механизмы, приборы, аппараты и соединяющие их трубы. Стандартные схемы котельных частных домов включают совокупность котлов, циркуляционных, рециркуляционных, подпиточных и сетевых насосов, аккумуляторных и конденсационных баков, устройств подачи топлива и его сжигания, аппаратов для деаэрации воды, теплообменников, вентиляторов, пультов управления, тепловых щитов. На выбор и расположение оборудования оказывают влияние вид теплоносителя и тепловые коммуникации, а также качество используемой воды.

В процессе составления схемы водогрейной котельной необходимо следить за соответствием технических характеристик оборудования, которые должны отвечать требованиям выбранного температурного режима

Тепловые сети, работающие на воде, можно разделить на две группы:

  • открытые, в которых жидкость отбирается в местных установках;
  • закрытые, в которых вода, отдав теплоту, возвращается в котел.

Образцом принципиальной схемы может служить пример водогрейной котельной открытого типа. На обратной линии установлен циркуляционный насос, который обеспечивает доставку воды в котел и дальше по системе. Расчетный температурный режим данной схемы – 155-70°С. Два типа перемычек (рециркуляционая и перепускная) соединяют две основные линии – подающую и обратную.

Принципиальная схема котельной: 1 – насос сетевой; 2 – насос подпиточный; 3 – бак подпиточной воды; 4 – насос исходной воды; 5 – насос подачи; 6 – расходный бак; 7 – эжектор; 8 – охладитель; 9 – деаэратор вакуумный; 10 – подогреватель очищенной воды; 11 – очистительный фильтр; 12 – подогреватель исходной воды; 13 – котел водогрейный; 14 – насос рециркулярный; 15 – перепуск

Советы по эксплуатации тепловой схемы

В связи с возникновением дымовых газов может появиться коррозия металлических покрытий сернокислого или низкотемпературного происхождения. Чтобы избежать ее появления, следует контролировать температуру воды. Оптимальное значение на входе в котел — 60-70˚С. Чтобы повысить температуру до требуемых параметров, необходимо установить рециркулярный насос.

Чтобы водогрейные котлы служили долго, исправно и экономично, следует следить за постоянством расхода воды. Минимальное значение расхода устанавливает компания-изготовитель оборудования.

Для лучшей работы котельных установок используют вакуумные деаэраторы. Водоструйный эжектор создает вакуум, а выделяемый пар используется для деаэрации.

Автоматизация работы котельного оборудования

Глупо было бы не воспользоваться возможностями, которые облегчают эксплуатацию отопительных систем. Автоматика позволяет использовать набор программ, которые управляют тепловыми потоками в зависимости от режима дня, погодных условий, а также помогают дополнительно обогревать отдельные помещения, например, бассейн или детскую.

Пример принципиальной автоматизированной схемы: автоматический режим работы котельной контролирует эксплуатацию контуров рециркуляции воды, вентиляции, нагревания воды, теплообменником, 2 контурами теплого пола, 4 контурами отопления здания

Существует перечень пользовательских функций, адаптирующих работу оборудования в зависимости от образа жизни обитателей дома. Например, кроме стандартной программы обеспечения горячей водой, существует комплекс индивидуальных решений, которые являются более удобными и даже экономными для жильцов. По этой причине может быть разработана схема автоматизации котельной с выбором одного из популярных режимов.

Программа «Спокойной ночи»

Доказано, что оптимальная ночная температура воздуха в помещении должна быть на несколько градусов ниже дневной, то есть идеальный вариант – на время сна понизить температуру в спальне примерно на 4°С. В то же время человек испытывает дискомфорт, пробуждаясь в непривычно прохладном помещении, следовательно, рано утром температурный режим необходимо восстановить. Неудобства легко решаются с помощью автоматического переключения системы обогрева на ночной режим и обратно. Контроллерами, регулирующими ночные часы, занимаются компании DE DIETRICH и BUDERUS.

Система приоритетов горячего водоснабжения

Автоматическое регулирование потоками горячей воды также является одной из функций общей автоматизации оборудования. Оно делится на три вида:

  • приоритетное, при котором во время пользования горячей водой полностью отключается система отопления;
  • смешанное, когда мощности котла разграничиваются на обслуживание нагрева воды и обогрева дома;

неприоритетное, при котором обе системы действуют сообща, но на первом месте – обогрев здания.

Автоматизированная схема: 1 – котел водогрейный; 2 – насос сетевой; 3 – насос исходной воды; 4 – подогреватель; 5 – блок ХВО; 6 – насос подпиточный; 7 – блок деаэрации; 8 – охладитель; 9 – подогреватель; 10 – деаэратор; 11 – охладитель конденсата; 12 – насос рециркуляционный

Низкотемпературные режимы работы

Переход на низкотемпературные программы становится основным направлением последних разработок производителей котельных. Преимуществом данного подхода является экономический нюанс – уменьшение расхода потребляемого топлива. Как раз автоматика позволяет регулировать температуру, выбирать верный режим и тем самым снижать уровень нагрева. Все перечисленные пункты необходимо учитывать на этапе составления тепловой схемы водогрейной котельной.

ТЕПЛОВАЯ СХЕМА ВОДОГРЕЙНОЙ КОТЕЛЬНОЙ

Водогрейные котельные используются главным образом как отопительные котельные. Горячая вода в качестве теплоносителя для технологических потребителей используется более или менее часто только в сушильных установках. Источником теплоты в водогрейных котельных являются водогрейные котлы. Они дешевле в расчете на единицу тепловой мощности по сравнению с паровыми котлами, конструкции их проще, требования к эксплуатационному и ремонтному персоналу менее жесткие. Гораздо мягче и требования к водному режиму.

Читайте также:  Квартирные теплосчетчики: типы и монтаж - особенности установки, как поставить прибор на учет, подробное фото

В котельных малой мощности используются малоэффективные чугунные водогрейные котлы. В котельных большей мощности применяют стальные водогрейные котлы, которые предъявляют более строгие требования к качеству воды, чем чугунные, но все же гораздо менее строгие, чем паровые котлы.

Тепловая схема водогрейной котельной с типичным набором оборудования приведена на рис. 23.5. Сетевой насос СН прокачивает сетевую воду через водогрейный котел ВК, на выходе из которого поток нагретой (прямой) сетевой воды делится на две части. Большая часть 1 направляется потребителям, меньшая часть 2 направляется на обеспечение собственных нужд котельной. Трубопроводы прямой и обратной сетевой воды соединены рециркуляционной ab и перепускной cd линиями с регуляторами температуры FT. Движение по рециркуляционной линии обеспечивается рециркуляционным насосом PH, движение по перепускной линии вызывается разностью давлений в точках end. Назначение рециркуляционной линии — поддерживать на входе в котел достаточно высокую температуру, чтобы предотвратить конденсацию водяного пара из дымовых газов на поверхностях котла и их коррозию, а также обеспечивать оптимальный расход воды через котел при суточных и сезонных колебаниях расхода сетевой воды, отпускаемой внешним потребителям. Назначение перепускной линии — регулирование температуры прямой сетевой воды за счет смешения ее в необходимом соотношении с более холодной обратной сетевой водой. Изменение расходов воды в перепускной и рециркуляционной линиях позволяет поддерживать в водогрейном котле оптимальный тепловой и гидравлический режим при переменной тепловой мощности внешних потребителей.

Часть сетевой воды неизбежно теряется из-за неплотностей арматуры, аварий, ревизий и т.п. В открытых системах теплоснабжения часть сетевой воды расходуется также на нужды горячего водоснабжения. Все эти потери восполняются добавочной водой, которая должна быть очищена от механических, химических примесей и растворенных газов. Сырая вода после осветлительных фильтров, не отличающихся принципиально от осветлительных фильтров паровых котельных, насосом сырой воды НСВ через подогреватель сырой

Рис. 23.5. Тепловая схема водогрейной котельной воды ПСВ подается в умягчительные фильтры химводоподготовки ХВО. Большая часть химочищенной воды направляется через подогреватель химочищенной воды ПХВ в деаэратор Д. Температура ее перед деаэратором должна быть на 5—10 °С выше температуры насыщения, определенной по давлению в деаэраторе. В водогрейных котельных в связи с отсутствием пара применяются вакуумные деаэраторы, в которых обычно поддерживается абсолютное давление 0,03 МПа, которому соответствует температура насыщения 69 °С.

Необходимое разряжение создается в деаэраторе водяным эжектором ВЭ — струйным компрессором, в котором рабочим телом служит вода, разгоняемая в сопле под действием насоса эжектора НЭ. В камере эжектора создается разряжение более высокое, чем в деаэраторе, и паровоздушная смесь поступает в камеру эжектора, проходя предварительно охладитель выпара ОВ, в котором большая часть пара из паровоздушной смеси конденсируется, отдавая выделяющуюся при этом теплоту химочищенной воде, и смешивается с водой рабочего контура. Подогретая химочищенная вода направляется в деаэратор по трубопроводу е. Выхлоп эжектора направляется в бак расходной воды БРВ. В нем вода отделяется от воздуха, который удаляется в атмосферу. Потери воды рабочего контура эжектора восполняются химочищенной водой по трубопроводу/ Часть потока воды из трубопровода/по трубопроводу 3 направляется через ОВ на деаэрацию. Другая часть по трубопроводу 4 поступает в БРВ для восполнения потерь в контуре водяного эжектора.

Для восполнения потерь сетевой воды при авариях в котельной предусматривается бак-аккумулятор деаэрированной воды БА с объемом, достаточным для работы котельной в течение 20—30 мин на номинальном режиме. Бак-аккумулятор заполняется деаэрированной водой из деаэратора перекачивающим насосом ПрН. При необходимости пополнения тепловой сети вода из бака-аккумулятора перекачивается во всасывающую линию сетевого насоса под- питочным насосом ПпН.

Типы и принципиальные схемы котельных

В городах для ТС применяются крупные районные котельные с тепловой нагрузкой 116 – 812 МВт, квартальные и групповые с нагрузкой 17,4 – 116 МВт, а также мелкие и местные котельные с нагрузкой до 17,4 МВт.

Крупные котельные характеризуются меньшими удельными капитальными затратами и более эффективным использованием топлива, поэтому в настоящее время стремятся строить в основном крупные районные котельные, отпускающие теплоту одновременно для жилищно-коммунального сектора (ЖКС) и для промышленных объектов.

Квартальные, групповые, мелкие и местные котельные, используемые как в секторе промышленности, так и в ЖКС, сооружаются в основном вследствие разновременности и поэтапности строительства различных объектов.

Для теплоснабжения сельских и небольших рабочих поселков находят применение поселковые котельные мощностью до 12 МВт и децентрализованные домовые (местные) и поквартирные источники теплоты. Поселковые котельные обычно снабжают теплотой по централизованным с-мам центральную часть поселков, состоящую из многоквартирных секционных и общественных зданий, и производственные зоны; децентрализованные источники теплоты – расположенные на периферии малоквартирные и отдельно стоящие здания.

В зависимости от вида теплоносителя котельные подразделяются на водогрейные, паровые и пароводогрейные.

Водогрейные котельные оборудуются стальными или чугунными водогрейными котлами, вырабатывающими горячую воду, и предназначены для обеспечения в основном жилищно-коммунальных тепловых нагрузок: отопления, вентиляции и горячего ВС.

В современных крупных с-мах ТС применяются стальные водогрейные котлы, рассчитанные на давление до 2,2 МПа и темп-ру нагрева воды до 180°С. Чугунные и некоторые типы стальных водогрейных котлов, рассчитанные на давление до 0,6 МПа и темп-ру нагрева воды до 95 – 150 0 C, применяются в индивидуальных домовых котельных и для мелких с-м ТС, например в сельских поселках.

Принципиальная схема котельной со стальными водогрейными котлами при двухтрубной тепловой сети показана на рис. 11.3.

В водогрейных котлах 1 в результате сжигания топлива производится подогрев воды до требуемой для ТС темп-ры (например, 150°С). Часть нагретой в котлах воды с помощью рециркуляционных насосов 2 подается в обратную линию перед котлами. Рециркуляция необходима для подогрева воды на входе в стальные котлы до темп-р выше темп-р точки росы, значения которых зависят от вида топлива, а также для поддержания постоянного расхода воды через котлы. При темп-рах воды на входе в стальные котлы ниже темп-р точки росы происходят конденсация водяных паров из газов, образование отложений и сернистая коррозия поверхностей нагрева, а при снижении расхода воды более чем на 20% – неравномерное распределение воды в греющих трубках котла, приводящее к вскипанию воды и локальным пережогам трубок. Для устранения коррозии минимальная температура воды на входе принимается: при сжигании газа – примерно 70°С, при сжигании мазута – 110°С.

Основная часть нагретой в котлах воды поступает в подающую магистраль теплосети. Для снижения темп-ры воды в подающей магистрали в соответствии с применяемым качественным методом регулирования тепловой нагрузки производится подмешивание холодной воды из обратной магистрали по перемычке 4. Количество подмешиваемой воды регулируется клапаном 5 в зависимости от величины тепловой нагрузки.

Циркуляция воды в теплосети производится сетевым насосом 6, на всасывание которого с помощью подпиточного насоса 8 подается подпиточная вода после химводоочистки 7.

Рис 11.3. Принципиальная схема котельной со стальными водогрейными котлами при двухтрубной тепловой сети

1 – котлы, 2 – рециркуляционный насос 3 – регулирующий клапан, 4 – перемычка из обратной линии в подающую; 5 – регулирующий клапан, 6 – сетевой насос, 7 – аппараты химводоочистки.

При использовании мазута в качестве основного или резервного топлива в водогрейных котельных иногда дополнительно устанавливают вспомогательные паровые котлы небольшой мощности, вырабатывающие пар для собственных нужд котельной (разогрева мазута, деаэрации питательной воды и др.).

В мелких с-мах ТС при использовании однотипных стальных или чугунных водогрейных котлов находит применение схема, показанная на рис. 11.4. Особенностью ее является то, что подача воды на отопление и горячее ВС производится раздельно по четырехтрубной с-ме. Для подогрева воды на горячее ВС применяется теплообменник, греющая вода для которого отбирается из подающей магистрали через регулятор температуры типа PT, поддерживающий постоянной темп-ру подаваемой на горячее ВС воды (60 – 65°С). При этом расчетная темп-ра подаваемой на отопление воды может составлять от 95 – 115°С для чугунных котлов до 150 – 180°С для стальных.

Рис. 12.4. Принципиальная схема котельной с водогрейными котлами при четырехтрубной системе теплоснабжения:

1 – котлы; 2 – регулятор температуры; 3 – теплообменник; 4 – перемычка из обратной линии в подающую; 5 – регулирующий клапан; 6 – сетевой насос; 7 – аппараты химводоочистки; 8 – подпиточный насос; 9 – регулятор подпитки; 10 – насос.

Паровые котельные оборудуются только паровыми котлами и применяются в основном для выработки пара на технологические нужды, а в отдельных случаях при отсутствии водогрейных котлов требуемых типоразмеров и небольших жилищно-коммунальных нагрузках – для выработки горячей воды для с-м ТС.

Паровые котлы также выполняются стальными и чугунными. Стальные паровые котлы выпускаются в настоящее время промышленностью на паропроизводительность 1 – 75 т/ч и рабочее давление пара 0,9; 1,4; 2,4 и 4 МПа. Одновременно для паро- и ТС применяются котлы с давлением пара 1,4 МПа. Чугунные паровые котлы имеют меньшую паропроизводительность и рабочее давление пара до 0,17 МПа и применяются для пароснабжения мелких потребителей.

Принципиальная схема котельной со стальными паровыми котлами, отпускающей пар на технологические нужды и горячую воду на ТС, показана на рис. 11.5.

Вырабатываемый в котлах 1 пар по паропроводам направляется к технологическим потребителям и в пароводяной теплообменник 4 для подогрева воды, циркулирующей в с-ме ТС. Конденсат от технологических потребителей и после пароводяного теплообменника поступает в деаэратор 9, для работы которого используется редуцированный пар от котлов. Для восполнения потерь конденсата в деаэратор с помощью подпиточного насоса 12 подается также подпиточная вода после химводоочистки 11. Из деаэратора вода подается питательным насосом 10 в котлы.

Циркуляция воды в с-ме ТС осуществляется с помощью сетевых насосов 6. Отпуск теплоты на ТС регулируется путем изменения расхода пара с помощью регуляторов 3 в соответствии с требуемым темп-рным графиком. Подпитка воды в тепловую сеть производится подпиточным насосом 12 после химводоочистки 11 на всасывание сетевого насоса.

Рис. 11.5. Принципиальная схема котельной с паровыми котлами, отпускающими пар и горячую воду

1 – котлы; 2 – РОУ, 3 – регулирующий клапан, 4 – пароводяной теплообменник, 5 – конденсатоотводчик, 6 – сетевой насос, 7 – фильтр, 8 – регулятор подпитки, 9 – деаэратор, 10 – питательный насос, 11 – аппараты химводоочистки, 12 – подпиточный насос

Пароводогрейные котельные, называемые также смешанными, оборудуются указанными выше типами паровых и водогрейных котлов или комбинированными пароводогрейными котлами (например, типа KTK) и предназначаются для выработки пара на технологические нужды и горячей воды для обеспечения нагрузок отопления, вентиляции и горячего ВС.

Мощность и число паровых и водогрейных или пароводогрейных котлов определяются значениями нагрузок по горячей воде и паровой нагрузки с учетом собственных нужд котельной. Схема пароводогрейной котельной состоит из двух контуров: 1) для выработки пара и 2) для выработки горячей воды.

Мощность котельных выбирается по расчетной максимальной тепловой нагрузке потребителей. При этом типоразмеры установленных котлоагрегатов должны быть такими, чтобы при выходе из строя наибольшего по производительности котла оставшиеся котлы обеспечивали максимальный отпуск теплоты технологическим потребителям и требуемое для наиболее холодного месяца среднее количество теплоты для нагрузок ЖКС.

Ссылка на основную публикацию